
Teaching and Using AI in the Classroom:
Integrating AI Modules in Undergraduate

Computer Science Education

Martin Cenek1[0000−0001−7140−7084] and Ronnie Delos Santos1

University of Portland, Portland OR 97203, USA {cenek,delossan25}@up.edu

Abstract. Undoubtedly, the future workforce will be impacted by the
increasing adoption of generative AI across industries. To prepare stu-
dents for this evolving landscape, AI must be integrated into under-
graduate computer science education. To address this, we explore the
redesign of a core computer science course to include experiential learn-
ing modules on AI literacy, generative AI tools, and responsible AI usage.
In addition, we report on the benefits, challenges, and ethical consider-
ations of using small language models (SLMs) for automated grading.
Finally, through an analysis of student engagement, learning outcomes,
and perceptions of AI-driven instruction, we provide insights into best
practices for responsible AI adoption in academia.

Keywords: teaching generative AI tools · AI skills for software engi-
neers · generative AI in education.

1 Introduction

Over the last couple of decades, the science and practice of information retrieval
have undergone fundamental changes. The transition from physical archives to
digital repositories has made large amounts of information readily accessible.
The use of search engines has gone from requiring knowledge of Boolean op-
erators to supporting natural language processing (NLP). While this shift has
increased accessibility, it has also changed how users interact with information.
Today, users often pose poorly structured queries and receive equally subopti-
mal results due to the forgiving nature of modern search interfaces. A similar
paradigm shift is now occurring with large language models (LLMs) and genera-
tive AI tools. These models enable users to generate content more efficiently, but
their effective use heavily depends on users with AI literacy—an understanding
of their mechanics, limitations, and appropriate use cases. Without structured
guidance, students may over-rely on AI tools without proper evaluation or com-
pletely reject them because of uncertainty or ethical concerns. To proactively
address this, we redesigned a core undergraduate computer science course to
integrate experiential learning modules on generative AI literacy, responsible AI
usage, and AI ethics [7]. These modules aim to teach students how generative
AI models function, their practical applications, and the ethical implications



2 Cenek et al.

of AI-generated content, particularly in relation to bias, fairness, and academic
integrity [5].

Beyond AI literacy, another critical challenge is automated grading. Tra-
ditional grading methods are often subject to inconsistencies due to human
bias and fatigue. As class size grows, manually evaluating student submissions
becomes an increasing burden on instructors which may lead to delayed feed-
back for students. To alleviate this, automated grading systems have long been
used to streamline assessment, but their effectiveness has been largely limited
to structured formats like multiple-choice or numerical responses. While these
approaches work well for rule-based evaluation, grading free-response answers
presents a much greater challenge. Unlike structured questions, free-response
grading requires not only identifying relevant keywords and syntax but also inter-
preting context, reasoning, and nuance. This complexity is further increased by
the fact that students might make minor errors that humans intuitively recognize
as acceptable, yet automated systems struggle to distinguish between a trivial
mistake and a fundamentally incorrect response. As a product of this, achieving
accurate and fair automated assessment of free-response answers requires more
advanced techniques while minimizing misclassification and penalization.

In order to address these challenges, we present the redesign, implementation,
and results of a core computer science laboratory course (CS376: Linux and Unix
Tools). While the course traditionally focused on Unix/Linux environments and
system tools, the revised curriculum now introduces dedicated AI learning mod-
ules and automated grading. All these changes aim to enhance student learning
and reduce instructor workload.

1.1 The Core Principles of Using AI in Undergraduate Education

Prior to the course redesign, we surveyed the computer science program’s indus-
try advisory board revealing a stark divide in AI adoption. Almost half of the
members were strictly prohibited from using generative AI at work, while the
other half were encouraged to use them for productivity. The primary differen-
tiator was company size—larger employers were more cautious due to concerns
over intellectual property risks. Despite this, there is still an increasing number
of companies that use generative AI tools to build software which make the in-
clusion of teaching generative AI tools in the undergraduate curriculum more
and more essential [1, 2, 10, 11].

The discussions among the computer science educators in the department
echoed the recent reservations about the use of generative models in education,
but we also clearly saw the benefits of using these models in the education of
students and their use to automate some mechanistic tasks for software engineers
[8, 12].

As a result of the advisory board input, faculty discussions, and student in-
put, we formalized the guiding principles summarized in Figure 1 of how the
generative AI tools should and should not be used in the undergraduate com-
puter science education. As the four year undergraduate curriculum progresses
from teaching fundamentals to advanced concepts to specialization within the



AI in Classroom 3

major, the faculty should provide guidance to students on how to use the genera-
tive AI tools to aid in their education. The Figure 1 shows an inverse relationship
between the student’s standing and the reliance on the generative AI models to
assist in code generation. In the courses that teach computing fundamentals,
generative AI tools should be used to reinforce student understanding of top-
ics by generating quizzes, explaining code, giving an alternative explanation of
covered topics, or generating practice problems with solutions. For upper divi-
sion courses, use of generative AI tools should be focused on more creative tasks
such as generating unit tests, bug bashing and code audits, pre-generating code,
code commenting and using the generative AI tools as a language interface. The
overall guiding principle is to use the generative AI tools as a sounding board
or as a tutor just as if it were a field expert. However, students must ensure
to avoid over-relying on the tool to do the thinking, writing, coding or problem
solving for the student. Off-sourcing the learning, thinking, writing, coding, or
problem solving could hinder a program’s learning objectives and consequently
the student themselves.

Fig. 1. The guiding principles of how to use AI in the curriculum.

2 Curriculum and AI Module Design

The Linux and Unix Tools laboratory, a required one-credit course for second-
or third-year students, aims to equip them with practical DevOps skills essen-
tial for the workplace [11]. The course covers a broad range of topics, including
software development toolchains, build and deployment tools, containerization,
virtualization, cybersecurity, and Bash scripting. With generative AI tools be-
coming an integral part of modern software engineering, their inclusion in the
curriculum addresses the growing demand for AI-driven development workflows
[2].



4 Cenek et al.

The course follows a scaffolded learning approach, where experiential lab
modules build on one another through progressive reinforcement of key concepts,
ensuring students develop both foundational and advanced skills systematically.

2.1 AI Introduction

An increasing number of undergraduate computer science students enter the
program with little to no prior exposure to computing beyond basic consumer-
level interactions. This growing gap also extends to other aspects of computer
science like AI literacy. The introductory section of the AI modules begins with
data modeling fundamentals by emphasizing how models generalize patterns
from data to approximate user queries. The section starts with a linear regression
example, then transitions to word embeddings in high-dimensional vector spaces
and retrieval-augmented generation (RAG) in language models.

The basics of prompt engineering are introduced to maintain a balance be-
tween providing structured instructions and allowing AI models to generate ap-
propriate responses. Rather than delving into the technical construction of gen-
erative AI models, the focus remains on crafting effective prompts to maximize
output quality.

Finally, students engage in hands-on exercises exploring natural language
processing (NLP) tasks where LLMs excel, such as text summarization, text
editing, and document formatting. These structured tasks are later compared
to areas where generative AI struggles, including data analytics and precision-
based artifact generation which help students understand both the strengths and
limitations of AI tools.

2.2 AI Fundamentals

Rather than explaining the basics of how generative AI tools are constructed, we
treated them as black-box systems focusing on their high-level aspects. Students
would explore how the presence or absence of specific training data influenced a
model’s ability to generate accurate responses. This approach highlighted both
the advantages of using generative AI tools, but also emphasized the fundamental
limitations of different models to generate correct responses.

To demonstrate the strengths of these models, students worked on tasks
such as generating source code for common programming functions, including
computing a factorial, sorting a list, and translating text between languages such
as English, French, German, and Spanish.

On another task, students were encouraged to explore model failures by se-
lecting a generative AI tool and designing tasks where it would likely struggle.
They brainstormed queries for uncommon artifacts absent from the training
data, tested highly specific prompt requests, or played a game of ’telephone’ to
observe how errors compounded over successive generations of model output.
Acknowledging that these experiments might yield varying results depending on
model updates and retraining, we framed this exercise as an evolving exploration
rather than a static test.



AI in Classroom 5

Following a think-pair-share pedagogy, students first designed and tested
their challenges individually, then collaborated in pairs to critique and refine
their examples. Finally, they shared their most interesting model failures on a
digital pin-up board, which fostered a broader discussion on bias, generalization,
and the unpredictability of AI-generated content.

2.3 AI in Discipline

The second experiential learning AI module focused on applying generative AI
tools in computer science and software development. This module explored both
the benefits and limitations of AI-driven automation in coding, highlighting when
AI can enhance productivity and software quality and when it fails to generate
reliable results. The goal was to help students identify software engineering tasks
that AI can assist with effectively while also recognizing scenarios where AI-
generated outputs may be flawed or impractical [2].

The first task was to use LLM for code explanation of a non-trivial code-
base. Using progressively refined prompts, students worked to generate high-level
system descriptions, identify key functional components, and analyze low-level
code implementation details. Their comprehension was assessed through small
challenge problems that required them to apply their understanding to modified
versions of the code. This activity reinforced prompt engineering strategies for
extracting meaningful explanations from AI tools.

The second learning objective was to use generative AI tools as a language
interface between the software project’s Specification and Requirement Doc-
ument (S&R) and its codebase. For this task, students used LLMs to identify
features described in the S&R that were missing in the implementation. Simi-
larly, they would need to detect functionalities in the codebase not captured in
the documentation. By refining their AI prompts, students gained insight into
how LLMs can bridge the gap between technical specifications and implementa-
tion while also recognizing the limitations of AI-driven code analysis.

Another focus area is AI-assisted code commenting which is a feature
that is increasingly integrated into modern integrated development environments
(IDE) [2]. Students examined how AI-generated comments corrected, enhanced,
or occasionally over-explained existing documentation. These exercises empha-
sized best practices in comment clarity, scope, and granularity, covering both
inline and block-level comments.

The final set of activities explored AI-assisted software engineering tasks such
as code-formatting, optimization, and interface design. These were presented as
high-level discussions rather than hands-on exercises, as AI-generated output
in these domains is highly dependent on the chosen programming language,
project-specific coding conventions, and established design patterns [4].

To counterbalance the software engineering tasks for which the use of the
generative AI tools improves the software product quality, we asked students to
explore one of the tasks on which the generative models fail to produce correct
answers. Their reflections included:



6 Cenek et al.

– AI-generated code is often syntactically correct but functionally naive, some-
times including unnecessary or inefficient implementations.

– The effectiveness of AI-driven code translation depends on the original code’s
complexity and the availability of training data for the target language.
Translations ranged from poorly structured to usable and inconsistent solu-
tions.

– The outputs of the generative AI tools to optimization code was limited
to suggestions and ideas rather then well engineered codebase optimization,
especially for the projects implemented in an uncommon programming lan-
guage.

So far, both AI modules used publicly facing, commercial quality LLMs.
The last set of module activities showed students how to interface with a local
instance of a pre-trained LLM. The goal of these activities was to illustrate how
software engineers can take advantage of embedding a generative AI model
into a software project with minimal effort and maximum data security. The
tasks asked students to step through and analyze each step of processing user
prompts from a query written in plain English, transformer conversions into
tokens, conversion of the tokens into indexes, embedding the input indexes into
the high dimensional vector spaces and generating the model’s answers with
subsequent output decoding.

2.4 AI Ethics

The goal of the AI Ethics exercises was to illustrate how easy it was to infringe on
copyright restrictions by using generative AI tool code outputs in a proprietary,
for-profit codebase. Building on the AI Fundamentals module, these exercises
shifted focus from how AI generates content to the ethical risks of its unchecked
use.

Despite efforts by AI developers to train large language models (LLMs) using
data covered under fair use doctrine, users of publicly accessible models have no
visibility into or control over the training data. As a result, LLMs may inadver-
tently reproduce copyrighted or copyleft licensed code, raising legal and ethical
risks. While these models act as proxies for knowledge generation, they lack the
ability to differentiate between openly licensed content and proprietary material,
making it essential for users to critically evaluate AI-generated outputs before
integration into commercial projects.

3 Implementing Automated Grading of Lab Assessments

The CS 376: Linux and Unix Tools course at the University of Portland is de-
signed to equip students with practical system administration skills, covering
essential Unix/Linux commands, shell scripting, and DevOps fundamentals. The
course follows a hands-on, lab-based format, where students write command-line
scripts, analyze system behavior, and document their understanding. However,



AI in Classroom 7

before integrating Jupyter Notebooks and automated grading, the course relied
entirely on manual assessments using PDFs and in-class check-offs. Students
documented their command outputs, scripts, and explanations in PDF reports,
which were then manually reviewed by instructors. Additionally, for certain lab
exercises, students demonstrated their work live to an instructor, who would
verify correctness in real time before granting credit.

While this approach worked for small class sizes, it became increasingly inef-
ficient and inconsistent as enrollment grew. The reliance on PDF-based submis-
sions introduced challenges in grading consistency, as instructors had to manu-
ally cross-reference each response against expected outputs. Additionally, in-class
check-offs became a bottleneck, often leading to long queues of students waiting
for their work to be verified. This system also lacked immediate feedback mean-
ing students would often wait days until scheduled class time to receive graded
feedback on their assignments. The delay hindered their ability to quickly iden-
tify mistakes and reinforce learning ultimately reducing the effectiveness of the
hands-on curriculum.

Another major limitation of the previous grading system was the inconsis-
tent computing environments. Students worked on a variety of personal ma-
chines with different operating systems, shell environments, and software con-
figurations, leading to execution inconsistencies. Commands that worked on one
system could behave differently on another due to variations in macOS vs. Linux
utilities, WSL compatibility, and shell differences. These discrepancies made
grading subjective, as functionally correct responses could differ in format, re-
quiring instructors to manually investigate system-specific issues rather than
focusing on conceptual understanding.

To resolve this, we transitioned to JupyterHub, ensuring all students worked
in a standardized, pre-configured Unix/Linux environment. This eliminated OS-
related discrepancies, allowing commands to execute consistently across all stu-
dents. Additionally, JupyterHub streamlined assignment submission and exe-
cution through nbgrader, automating structured assessments while providing a
reproducible grading environment [6].

With execution environments now standardized through JupyterHub, grad-
ing structured components such as code execution results and multiple-choice
questions became more efficient with nbgrader. However, free-response answers
where students explain Unix/Linux concepts in their own words remained a chal-
lenge. These responses varied significantly in phrasing, sentence structure, and
level of detail, making rule-based grading methods ineffective.

Traditional keyword-matching approaches often failed to capture semantic
correctness, leading to incorrect penalization of valid responses or acceptance
of superficially correct but conceptually flawed answers. To address this, we in-
tegrated a small language model (SLM) to assess semantic similarity between
student responses and expected answers. By using cosine similarity scoring, this
approach allows for meaning-based evaluation, ensuring that responses with dif-
ferent wording but correct conceptual understanding are graded fairly.



8 Cenek et al.

3.1 Grading with SBERT and Semantic Similarity

Evaluating free-response answers in the course posed a unique challenge, as stu-
dents often expressed correct concepts in varied ways. Traditional rule-based
grading systems, such as exact keyword matching or regex-based pattern recog-
nition, struggled to accommodate these variations, leading to false negatives
when correct answers were phrased differently and false positives when incor-
rect responses contained relevant keywords. To overcome these limitations, we
integrated Sentence-BERT (SBERT), a transformer-based model designed for
semantic similarity tasks, into the grading pipeline [9].

Unlike large language models (LLMs), which require extensive computational
resources and often generate responses based on probabilistic text prediction,
SLMs like SBERT are optimized for efficient, domain-specific tasks such as sim-
ilarity comparisons. This makes them well-suited for grading, as they do not
generate new content but instead assess meaning by computing the semantic
closeness between student responses and expected answers. The decision to use
an SLM over an LLM was driven by the need for lightweight, interpretable, and
resource-efficient grading, ensuring that assessments could be performed quickly
without the overhead of processing massive amounts of data or biased outcomes
[3].

The grading pipeline begins with preprocessing student responses, includ-
ing tokenization, lowercasing, and removing unnecessary formatting. Next, the
student’s response and a set of predefined expected answers are converted into
SBERT sentence embeddings, which represent their meaning in a high-dimensional
vector space. Cosine similarity is then computed between the student’s response
and the expected answer set, yielding a score between 0 and 1, where higher
values indicate stronger semantic similarity.

Using these cosine similarity scores, we established a threshold system: re-
sponses above 0.7 were automatically marked correct otherwise they were flagged
for instructor review. While this system significantly improved scalability and
grading consistency, it also introduced new challenges that required ongoing re-
finement.

3.2 Benefits and Challenges of SBERT

The integration of SBERT-based grading into the course provided several key
benefits, particularly in scalability, efficiency, and grading consistency. One of the
most immediate advantages was reducing instructor workload by automating the
evaluation of free-response answers. Previously, grading these responses required
manual comparison against a rubric, which became increasingly unsustainable
as enrollment grew. With SBERT, a significant portion of responses could be
graded instantly, allowing instructors to focus on reviewing borderline cases and
improving instructional materials rather than spending hours on routine grading.

Another major benefit was grading consistency. Manual grading often intro-
duced subjectivity, as different instructors might interpret responses differently,
leading to inconsistencies in scoring. By applying semantic similarity scoring,



AI in Classroom 9

SBERT ensured that all responses were graded against the same standardized
criteria, minimizing human bias and improving fairness across all students. This
was particularly useful for assessing conceptual understanding, as students often
used varied wording to explain the same ideas.

Finally, using an SBERT SLM instead of an LLM made the system efficient
and lightweight. Unlike large-scale models that require extensive computational
resources, SBERT operates efficiently on standard hardware, making it feasible
for use within the JupyterHub and nbgrader infrastructure. This ensured that
grading could be performed quickly without introducing long processing delays
or requiring costly infrastructure upgrades.

Despite its benefits, integrating SBERT into grading introduced several chal-
lenges that required continuous refinement. One of the most significant challenges
was developing a high-quality, diverse rubric of expected answers. Unlike struc-
tured assessments with clear-cut correct and incorrect answers, free-response
grading required capturing a broad range of valid explanations. Without suf-
ficient variations in the answer set, the model sometimes underestimated the
correctness of valid but unexpected responses, requiring manual intervention to
expand and refine the rubric.

Another challenge was the arbitrary nature of cosine similarity thresholds.
While 0.7 was selected as a reasonable cutoff based on empirical testing, there
was no universally optimal threshold. Raising the threshold risked false negatives,
incorrectly marking correct responses as incorrect, while lowering it risked false
positives, allowing vague or incorrect answers to pass. Determining the ideal
threshold required continuous monitoring and fine-tuning, particularly as new
questions and answer variations emerged.

Finally, handling ambiguous cases and borderline scores required ongoing in-
structor involvement. While SBERT effectively classified clear-cut correct and
incorrect responses, cases falling in the gray zone often required human review.
This meant that AI-assisted grading did not fully eliminate the need for man-
ual grading, though it significantly reduced the number of responses requiring
instructor attention.

3.3 Ethical Considerations in AI Grading

The integration of AI in grading introduces important ethical considerations,
particularly concerning fairness, bias, and transparency. While SBERT provides
a standardized method for evaluating free-response answers, grading automation
inherently risks reinforcing biases present in the training data or rubric. If the
predefined expected answers are too rigid or fail to account for diverse phrasing,
students with different writing styles or language backgrounds may be unfairly
penalized. This necessitates continuous refinement of answer sets and instructor
oversight to ensure that the model fairly evaluates responses across different
student populations.

Another key concern is the opacity of AI-driven decision-making. Unlike man-
ually graded responses, where students can see instructor comments and justi-
fications, AI-graded assessments rely on similarity scores that may not always



10 Cenek et al.

be intuitive. If a student receives an incorrect grade due to a low similarity
score, understanding why their answer was marked incorrect can be difficult.
To address this, we incorporated instructor review for borderline cases and pro-
vided students with explanatory feedback, ensuring they understand the grading
process and have the opportunity to contest their scores if needed.

Despite these challenges, AI-assisted grading can be an ethical enhancement
when used responsibly. By reducing instructor bias, providing consistent evalua-
tions, and allowing for rapid feedback, AI supports more equitable and scalable
assessments. However, human oversight remains essential to ensure that students
are graded fairly, and that the system evolves to accommodate a diverse range
of responses and learning styles.

4 Delivery and Assessment

The effectiveness of the redesigned CS 376: Linux and Unix Tools course was
evaluated through student feedback, performance improvements, and engage-
ment with the new AI-driven learning modules. Table 1 presents a comparative
analysis of student assessments from previous course offerings (Fall 2020-2022)
and from the redesigned version introduced in Fall 2024. As a one credit labora-
tory course with no lectures consisting of interactive hands-on learning modules,
the assessment categories 2. Effective Communication and 4. Helpful Learning
Environment are not a reflection on the instructor’s conduct of the course but
rather on the effectiveness of learning modules to effectively convey and deliver
new course material. The student course assessment of the newly re-designed
course show improvements of 16.4%, 21.4%, 21.4%, and 18.8% in the assessment
categories 1-4 respectively.

Assessment Criteria Fall 2020
(N=18)

Fall 2022
(N=23)

Fall 2024
(N=24)

1. Valuable Learning Experience 4.44 4.04 4.86 (+16.4%)
2. Effective Communication 3.94 3.43 4.50 (+21.4%)
3. Methods Effectively Conveyed Content 4.35 3.57 4.64 (+21.4%)
4. Helpful Learning Environment 4.39 3.70 4.64 (+18.8%)
Table 1. Student assessment of efficacy delivering course learning outcomes. The re-
ported values are average scores reported by students on a scale from 1: Did not meet
to 5: Fully met. The newly redesigned course assessment was delivered in the Fall 2024
while the reported assessment scores for Fall 2020-2022 are for the original course offer-
ing. The percentage improvements reported in the last column are calculated between
the assessment scores from the Fall 2022 and the newly redesigned course delivery in
the Fall 2024.

Qualitative feedback from semi-structured interviews and free-form text re-
sponses, visualized in Figure 2, reinforced the positive impact of the course
redesign. Common themes included improved engagement, clearer instructional



AI in Classroom 11

materials, and stronger integration of modern DevOps tools. Students partic-
ularly appreciated the structured guidance on generative AI topics, including
when and how to use AI tools responsibly in software development. Additionally,
the hands-on, self-guided learning format was cited as a major benefit, allowing
students to work at their own pace while still receiving immediate feedback.

Fig. 2. A word-cloud from the students’ free-form text responses used by the assessment
tool and semi-structured interviews highlight the effectiveness of the newly re-designed
course to deliver course content.

Overall, the integration of JupyterHub, nbgrader, and AI-assisted grading
significantly improved scalability, grading consistency, and student engagement.
While the system required continuous refinement, it demonstrated strong poten-
tial as a model for AI-enhanced learning in technical education.

5 Conclusion

The increasing accessibility of generative AI tools has introduced both opportu-
nities and challenges in undergraduate computer science education. While these
tools have the potential to enhance productivity and learning, they also raise
concerns about academic integrity, responsible usage, and long-term implica-
tions for software development careers. To address these issues, we implemented
a comprehensive course redesign in CS 376: Linux and Unix Tools, integrating
experiential learning modules on AI literacy, responsible AI use, and automated
grading with small language models.

Our findings suggest several best practices for integrating AI tools in un-
dergraduate education. First, structured guidance on when and how to use AI



12 Cenek et al.

meaningfully is crucial which we delivered as activities in three thematic cate-
gories: AI fundamentals, AI in discipline and AI Ethics. The implementation of
the learning activities mainly focused on the use of generative AI tools for pro-
ductivity and software quality. To counterbalance the desired use of generative
AI tools, the modules also included tasks for which LLMs do not produce correct
results which highlighted the current limitations of the generative AI models and
raised student’s awareness for potentially incorrect responses.

Second, the transition to JupyterHub and nbgrader significantly improved
the consistency of assessments, particularly for structured programming and
multiple-choice tasks. However, grading free-response answers remained a chal-
lenge due to the variability in student writing. Implementing SBERT for seman-
tic similarity scoring addressed many of the limitations of rule-based grading
by improving flexibility and accuracy, yet it also required extensive fine-tuning
of answer sets and threshold calibration to ensure fairness. While this method
greatly reduced instructor workload, it did not fully eliminate the need for human
oversight, particularly in borderline cases.

Despite the success of automated grading, challenges remain. Developing di-
verse, high-quality rubric examples is an ongoing effort, as the effectiveness of
the model depends on the breadth of accepted answers. Additionally, setting
an optimal similarity threshold is inherently subjective and requires continuous
refinement. Ethical concerns, such as transparency in grading and potential bi-
ases in AI models, further highlight the need for human-in-the-loop oversight to
ensure fairness and accountability.

Overall, students responded positively to the course redesign, reporting in-
creased engagement, clearer instruction, and a better understanding of AI’s role
in software development. The combination of standardized computing environ-
ments, automated grading, and structured AI learning modules proved to be an
effective approach to modernizing the curriculum while maintaining academic
rigor.

Acknowledgments. This research project was supported by the Donald P. Shiley
School of Engineering Endowment and the Donald P. Shiley School of Engineering
Project Development Fund. The authors would like to acknowledge the input from
many University of Portland undergraduate computer science students, and the Uni-
versity of Portland Computer Science Advisory Board members whose input was in-
valuable in the course redesign.

Disclosure of Interests. Authors declare no conflict of interest. The course redesign,
its implementation, and no aspect of the research to do so were conducted indepen-
dently without any commercial or financial relationships that would result in a potential
conflict of interest.

References

1. Coutinho, M., Marques, L., Santos, A., Dahia, M., França, C., de Souza Santos, R.:
The role of generative ai in software development productivity: A pilot case study.



AI in Classroom 13

In: Proceedings of the 1st ACM International Conference on AI-Powered Software.
p. 131–138. AIware 2024, Association for Computing Machinery, New York, NY,
USA (2024). https://doi.org/10.1145/3664646.3664773

2. Ebert, C., Louridas, P.: Generative ai for software practitioners. IEEE Software
40(4), 30–38 (2023). https://doi.org/10.1109/MS.2023.3265877

3. Flodén, J.: Grading exams using large language models: A compari-
son between human and ai grading of exams in higher education us-
ing chatgpt. British Educational Research Journal 51(1), 201–224 (2025).
https://doi.org/https://doi.org/10.1002/berj.4069

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
USA (1995)

5. Holmes, W., Tuomi, I.: State of the art and practice in ai in ed-
ucation. European Journal of Education 57(4), 542–570 (2022).
https://doi.org/https://doi.org/10.1111/ejed.12533

6. Jupyter, P., Blank, D., Bourgin, D., Brown, A., Bussonnier, M., Frederic, J.,
Granger, B., Griffiths, T., Hamrick, J., Kelley, K., Pacer, M., Page, L., Pérez, F.,
Ragan-Kelley, B., Suchow, J., Willing, C.: nbgrader: A tool for creating and grading
assignments in the jupyter notebook. Journal of Open Source Education 2(16), 32
(2019). https://doi.org/10.21105/jose.00032, https://doi.org/10.21105/jose.00032

7. Kitto, K., Sarathy, N., Gromov, A., Liu, M., Musial, K., Buckingham Shum, S.: To-
wards skills-based curriculum analytics: can we automate the recognition of prior
learning? In: Proceedings of the Tenth International Conference on Learning Ana-
lytics & Knowledge. p. 171–180. LAK ’20, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3375462.3375526

8. Miao, F., Holmes, W., Huang, R., Zhang, H., et al.: AI and education: A guidance
for policymakers. Unesco Publishing (2021)

9. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics (11 2019),
https://arxiv.org/abs/1908.10084

10. Santos, P.d.O., Figueiredo, A.C., Nuno Moura, P., Diirr, B., Alvim, A.C.F., San-
tos, R.P.D.: Impacts of the usage of generative artificial intelligence on software
development process. In: Proceedings of the 20th Brazilian Symposium on Infor-
mation Systems. SBSI ’24, Association for Computing Machinery, New York, NY,
USA (2024). https://doi.org/10.1145/3658271.3658337

11. Sauvola, J., Tarkoma, S., Klemettinen, M., Riekki, J., Doermann, D.: Future of
software development with generative ai. Automated Software Engineering 31(1),
26 (2024)

12. Yu, H.: Reflection on whether chat gpt should be banned by academia from
the perspective of education and teaching. Frontiers in Psychology 14 (2023).
https://doi.org/10.3389/fpsyg.2023.1181712


